Text
John E. Freund's mathematical statistics
In recent years, the growth of statistics has made itself felt in almost every phase of human activity. Statistics no longer consists merely of the collection of data and their presentation in charts and tables; it is now considered to encompass the science of basing inferences on observed data and the entire problem of making decisions in the face of uncertainty. This covers considerable ground since uncertainties are met when we flip a coin, when a dietician experiments with food additives, when an actuary determines life insurance premiums, when a quality control engineer accepts or rejects manufactured products, when a teacher compares the abilities of students, when an economist forecasts trends, when a newspaper predicts an election, and even when a physicist describes quantum mechanics.
It would be presumptuous to say that statistics, in its present state of devel¬opment, can handle all situations involving uncertainties, but new techniques are constantly being developed and modern statistics can, at least, provide the frame¬work for looking at these situations in a logical and systematic fashion. In other words, statistics provides the models that are needed to study situations involving uncertainties, in the same way as calculus provides the models that are needed to describe, say, the concepts of Newtonian physics.
The beginnings of the mathematics of statistics may be found in mid-eighteenth-century studies in probability motivated by interest in games of chance. The theory thus developed for "heads or tails" or "red or black" soon found applications in sit¬uations where the outcomes were "boy or girl," "life or death," or "pass or fail," and scholars began to apply probability theory to actuarial problems and some aspects of the social sciences. Later, probability and statistics were introduced into physics by L. Boltzmann, J. Gibbs, and J. Maxwell, and by this century they have found applications in all phases of human endeavor that in some way involve an element of uncertainty or risk. The names that are connected most prominently with the growth of mathematical statistics in the first half of the twentieth century are those of R. A. Fisher, J. Neyman, E. S. Pearson, and A. Wald. More recently, the work of R. Schlaifer, L. J. Savage, and others has given impetus to statistical theories based essentially on methods that date back to the eighteenth-century English clergyman Thomas Bayes.
Mathematical statistics is a recognized branch of mathematics, and it can be studied for its own sake by students of mathematics. Today, the theory of statistics is applied to engineering, physics and astronomy, quality assurance and reliability, drug development, public health and medicine, the design of agricultural or industrial experiments, experimental psychology, and so forth.
Tidak tersedia versi lain