PERPUSTAKAAN

Universitas Muhammadiyah Metro

  • Beranda
  • Profil
    Sejarah Visi Misi Struktur Organisasi Pustakawan Informasi Berita FAQ
  • Layanan
    Pinjam Koleksi Bebas Pustaka Usul Koleksi
  • e-Resources
    E-Journal eBooks
  • Research Tools
    Tools
  • Masuk
    Area Anggota Pustakawan Pengunjung
  • Indonesiana
    • Batavia Digital
    • Candi-Candi Indoesia
    • Dokumentasi Film Indonesia
    • Dokumentasi Sastra Indonesia
    • Perpustakaan Presiden
    • Kraton Nusantara
    • Manuskrip Nusantara
    • Warisan Indonesia
    • Perpustakaan Pangeran Diponegoro
    • Perpustakaan Jendral Sudirman
    • Perpustakaan Tokoh Film
    • Harta Karun Perpustakaan Nusantara
    • Perpuspedia
    • Literasi Kanker Indonesia
    • E-Resources Perpusnas RI
    Cari
    • Indonesia One Search
    • Pencarian dari DDC
    • DOAJ
    • Google Scholar
    • Scopus
    • JDIH
    • Kepustakaan Nasional Indonesia
    • Katalog Nasional
    Peralatan
    • Mendeley
    • Publish Or Perish
    • VOSviewer
    Sumber Pembelajaran
    • Perpustakaan Digital
    • TED
    • Google Experiments
    • Sumber Belajar Kemendikbud
    • Buku Elektronik
  • FAQ
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
➤

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of John E. Freund's mathematical statistics
Penanda Bagikan

Text

John E. Freund's mathematical statistics

Miller, Irwin - Nama Orang; Miller, Marylees - Nama Orang;

In recent years, the growth of statistics has made itself felt in almost every phase of human activity. Statistics no longer consists merely of the collection of data and their presentation in charts and tables; it is now considered to encompass the science of basing inferences on observed data and the entire problem of making decisions in the face of uncertainty. This covers considerable ground since uncertainties are met when we flip a coin, when a dietician experiments with food additives, when an actuary determines life insurance premiums, when a quality control engineer accepts or rejects manufactured products, when a teacher compares the abilities of students, when an economist forecasts trends, when a newspaper predicts an election, and even when a physicist describes quantum mechanics.

It would be presumptuous to say that statistics, in its present state of devel¬opment, can handle all situations involving uncertainties, but new techniques are constantly being developed and modern statistics can, at least, provide the frame¬work for looking at these situations in a logical and systematic fashion. In other words, statistics provides the models that are needed to study situations involving uncertainties, in the same way as calculus provides the models that are needed to describe, say, the concepts of Newtonian physics.

The beginnings of the mathematics of statistics may be found in mid-eighteenth-century studies in probability motivated by interest in games of chance. The theory thus developed for "heads or tails" or "red or black" soon found applications in sit¬uations where the outcomes were "boy or girl," "life or death," or "pass or fail," and scholars began to apply probability theory to actuarial problems and some aspects of the social sciences. Later, probability and statistics were introduced into physics by L. Boltzmann, J. Gibbs, and J. Maxwell, and by this century they have found applications in all phases of human endeavor that in some way involve an element of uncertainty or risk. The names that are connected most prominently with the growth of mathematical statistics in the first half of the twentieth century are those of R. A. Fisher, J. Neyman, E. S. Pearson, and A. Wald. More recently, the work of R. Schlaifer, L. J. Savage, and others has given impetus to statistical theories based essentially on methods that date back to the eighteenth-century English clergyman Thomas Bayes.

Mathematical statistics is a recognized branch of mathematics, and it can be studied for its own sake by students of mathematics. Today, the theory of statistics is applied to engineering, physics and astronomy, quality assurance and reliability, drug development, public health and medicine, the design of agricultural or industrial experiments, experimental psychology, and so forth.


Ketersediaan
#
Cadangan (Cadangan) 519.5 Mil j c.1
26222.1.8818
Tersedia namun tidak untuk dipinjamkan - Baca Di Tempat
#
Sirkulasi (Rak 6) 519.5 Mil j c.2
26223.2.8818
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
519.5 Mil j
Penerbit
London : Pearson., 2014
Deskripsi Fisik
iv, 472 hal. : il. ; 28 cm.
Bahasa
English
ISBN/ISSN
9781292025001
Klasifikasi
519.5
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Ed. VIII
Subjek
Matematika Statistik
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Tidak Ada Data
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN
NPP: 1872042D2000001

Layanan

Cek Pinjaman Buku Form Usulan Buku

Link Terkait

Website UM Metro Perpustakaan UM Metro Repository Repository Dosen e-Journal UM Metro Garuda Kemdikbud Digilib Um Metro

Jam Pelayanan

  • Senin-Kamis 07.30-15.30
  • Jumat 07.30-11.30
  • Sabtu-Minggu Libur

Hubungi Kami


© 2025 — Perpustakaan UM Metro
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
  • Akuntansi
  • Penelitian
  • Teknik Sipil
  • Teknik Mesin
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?